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Abstract: We have synthesized a fused tetraanthracenylporphy-
rin by oxidation of a meso-anthracenyl nickel(II) porphyrin with
FeCl3. This compound exhibits an intense red-shifted absorption
spectrum (λmax ) 1417 nm; ε ) 1.2 × 105 M-1 cm-1) and a small
electrochemical HOMO-LUMO gap (0.61 eV). The crystal
structure shows that it forms π-stacked dimers with a short Ni · · ·Ni
distance (3.32 Å).

The synthesis of large, flat π systems, or “molecular graphenes”,
is a growing field of research aimed at creating materials for use
as organic semiconductors and nonlinear optical dyes.1 Recently,
work in this area has focused on π-expanded porphyrins, in which
aromatic units are fused to the porphyrin ring.2-10

For over 35 years, chemists have been intrigued by the possibility
of synthesizing fused tetraanthracenylporphyrins.11 The high sym-
metry and large π system of such a molecule suggest that it should
have unusual optoelectronic properties. Here we report the synthesis
of a fully fused tetraanthracenylporphyrin, Ni-1. The near-IR (NIR)
absorption of this porphyrin is remarkably red-shifted and intense
(λmax ) 1417 nm; ε ) 1.2 × 105 M-1 cm-1). The crystal structure
of Ni-1 shows that it forms tight π-stacked dimers and suggests
that similar molecules with less bulky side chains may form discotic
columnar liquid crystals with useful charge-transport behavior.12

We previously found that expanded porphyrins can be difficult
to purify or characterize because of aggregation and that this
problem can be alleviated by attaching bulky aryl ether sub-
stituents.7b Hence, we adopted the same strategy here. Bromoan-
thracene 2 was synthesized in 79% yield by reacting anthrone 3
with phosphorus tribromide (Scheme 1). Lithium-halogen ex-
change followed by addition of pyrrole-2-carboxaldehyde gave
alcohol 4 (not isolated), which was tetramerized with propionic
acid to give H2-5 in 10% yield.13

Initial experiments (using MALDI mass spectrometry and NMR
analysis) indicated that the fully fused zinc derivative Zn-1 was

formed when Zn-5 was treated with scandium(III) triflate and 2,3-
dichloro-5,6-dicyanobenzoquinone (DDQ). However, we were not
able to isolate Zn-1 from the complex mixture of products, so we
explored other oxidants. Iron(III) chloride has been widely used to
fuse aromatic moieties to the porphyrin periphery.1,3,5b,6,7b This
reagent demetalates zinc porphyrins, so we tested its reaction with
the nickel(II) complex Ni-5. We were delighted to find that
treatment of Ni-5 with excess FeCl3 in dichloromethane results in
eightfold oxidative ring closure to give the fully fused product, Ni-
1, in 49% yield.

Crystals of Ni-1 were grown by diffusing ethanol vapor into a
solution of the porphyrin in benzene and then analyzed by X-ray
diffraction.14 Molecules of Ni-1 form π-stacked dimers in the crystal
(Figure 1), with two crystallographically independent porphyrin
molecules. The planes of the two molecules are almost parallel
(angle between the mean planes of the 24-atom porphyrin cores:
1.4°), and the two porphyrins in the dimer are twisted by ∼20°
with respect to each other. The mean distance of the core of one
porphyrin to the plane of the other is 3.41 Å, with a Ni · · ·Ni
distance of 3.316(2) Å. Both porphyrins adopt ruffled conforma-
tions; the mean deviation from planarity for the 24 atoms of each
porphyrin core (0.20 Å) is similar to that in a typical meso-
tetrasubstituted nickel(II) porphyrin and less than in Osuka’s
quadruply azulene-fused porphyrin (0.40 and 0.46 Å).5b The 1H
NMR spectrum of Ni-1 in C6D6 exhibits just six resonances at
normal chemical shifts (see the Supporting Information), showing
that the dimer aggregate dissociates in solution.

Conversion of Ni-5 to Ni-1 results in a dramatic change in the
UV-vis-NIR absorption spectrum (Figure 2). The absorption

Scheme 1. Synthesis of Fused Tetraanthracenylporphyrin Ni-1
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spectrum of Ni-1 shows a maximum at 1417 nm (optical
HOMO-LUMO gap: 0.87 eV). This peak is extremely sharp (ε )
1.2 × 105 M-1 cm-1; fwhm ) 284 cm-1), reflecting the high
symmetry and rigid geometry of the chromophore. The Q band of
Ni-1 occurs at a longer wavelength than those reported for all other
porphyrin monomers,5b and it is more red-shifted than those of most
conjugated porphyrin oligomers. As expected, Ni-1 has a small
electrochemical HOMO-LUMO gap and is easily oxidized. Square-
wave and cyclic voltammetry were carried out on Ni-5 and Ni-1
in THF with 0.1 M NBu4PF6. Ni-1 shows a first oxidation wave at

-0.44 V and a first reduction at -1.05 V (Eox
1 - Ered

1 ) 0.61 eV;
all potentials relative to internal ferrocene, Fc/Fc+), whereas Ni-5
has the typical electrochemistry of a porphyrin monomer (Eox

1 )
0.61 V; Ered

1 ) -1.81 eV; Eox
1 - Ered

1 ) 2.42 eV).
In conclusion, we have synthesized a fused tetraanthracenylpor-

phyrin, Ni-1, by the oxidation of a meso-anthracenyl porphyrin,
Ni-5, through a reaction first proposed by Yen in 1975.11 The key
to this successful synthesis was the use of bulky aryloxy substituents
to facilitate oxidative ring closure and to hinder formation of
extended aggregates, although these substituents do not prevent the
formation of dimeric aggregates in the solid state. This porphyrin
has an exceptionally small HOMO-LUMO gap (λmax ) 1417 nm;
Eox

1 - Ered
1 ) 0.61 eV). These results suggest that fused tetraan-

thracenylporphyrins may by useful materials for light harvesting
and charge transport in photovoltaic devices.
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Figure 1. Two orthogonal views of the dimeric arrangement of Ni-1 in
the crystal (hydrogens have been omitted for clarity).

Figure 2. UV-vis-NIR spectra of unfused tetraanthracenylporphyrin Ni-5
(gray) and fused tetraanthracenylporphyrin Ni-1 (black) in toluene.
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